
 

Dimensionality Assessment: Additional Methods 

In Chapter 3 we use a nonlinear factor analytic model for assessing dimensionality.  In this appendix two 

additional approaches are presented.  The first strategy is a traditional linear factor analytic approach and the 

second is structural equation model (SEM).  As mentioned in Chapter 3 the linear factor analysis of 

dichotomous data runs the risk of identifying "difficulty" factors.  However, we present the traditional approach 

because of its familiarity, the fact that its use with dichotomous data is not always problematic, and its 

generalizability to ordered polytomous data.  That is, with ordered polytomous data linear factor analysis as well 

as SEM are completely appropriate.  We conclude this appendix with a brief discussion of essential 

unidimensionality. 

 

Dimensionality Assessment: Linear Factor Analysis 

Recall that the mathematics data consist of five items administered to 19,601 examinees.  The 

intercorrelations amongst the items and the descriptive statistics are presented in Table C.1; the top half of the 

table contains the instrument's correlation matrix, R.  Although there are various ways one might assess the 

dimensional structure of an instrument's data (cf. Hattie, 1985; Stout, 1987, 1990; van den Wollenberg, 1988), 

one approach is to perform a principal axis (PA) analysis of the instrument's correlation matrix; see McDonald 

(1981) for a commentary on this approach.1   

Our PA of R shows a Kaiser-Meyer-Olkin measure of sampling adequacy of 0.72734.  This value  indicates 

borderline acceptance of our sample for performing a PA.  The first factor extracted has an eigenvalue ( 1λ ) of 

1.2845 and accounts for 25.7% of the common variance.  The remaining factors have λ s substantially less than 

1.0.  Lord (1980) suggests that if the first eigenvalue is large compared to the second and the second eigenvalue 

is not much larger than any of the others, then the instrument may be considered approximately unidimensional.  

The Cattell scree plot (Figure C.1) shows this pattern.  Although 1λ  is not very large, the scree plot indicates 

that a single factor underlies the data.  (Strictly speaking, Lord's guideline involves the eigenvalues from a 

tetrachoric item intercorrelation matrix; a tetrachoric correlation is defined in Appendix E: Using Principal Axis 

for Estimating Item Discrimination.)   
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Table C.1.  Descriptive statistics and correlation matrix for the mathematics test data 

     

 Items Intercorrelations 
    1 2 3 4 5  
 1.0000 
 0.2329 1.0000 
 0.1816 0.3278 1.0000 
 0.1436 0.3263 0.3087 1.0000 
 0.1088 0.2273 0.2324 0.2372 1.0000  

 
Mean (P) 0.8875 0.6441 0.5660 0.4270 0.3873 
SDa 0.3160 0.4788 0.4956 0.4947 0.4872 
rc

b 0.2460 0.4390 0.4157 0.4051 0.3117 
biserial r 0.4070 0.5640 0.5240 0.5110 0.3970  
communality 0.1031 0.3641 0.3140 0.2946 0.1607  
loadingsc 0.3211 0.6034 0.5603 0.5427 0.4008  
 

     
aStandard deviation 
bCorrected item-total correlation (rc; see Henrysson, 1963) 
cFactor loadings on first factor 

 

Based on this preliminary analysis we perform a second PA and specify the retention of only one factor.  

The reproduced R from the one factor solution shows that all residuals (the difference between R and the 

reproduced R) are less than |0.007|; the 1λ  is 1.2364 and accounts for 24.7% of the common variance.  The 

loadings from the one factor solution are presented in Table C.1.  Using a criterion that item loadings greater 

than 0.50 are considered good, then items 2-4 have good loadings, whereas items 1 and 5 have moderate 

loadings (i.e., using a moderate loading criterion of 0.30).  Therefore, although the first factor has a low 

eigenvalue, the change between it and the remaining factors' eigenvalues is comparatively large and the one-

factor solution is able to reproduce R relatively well.  As a result, it appears that a unidimensional model is a 

sufficiently accurate representation of the data.  The instrument's coefficient alpha is 0.6077 indicating a 

moderate degree of internal consistency given the short length of the examination. 
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Figure C.1. Scree plot for PA of Mathematics test data. 
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Dimensionality Assessment: Structural Equation Modeling 

So far we have used linear and nonlinear factor analyses for assessing dimensionality.  For pedagogical 

reasons we present an additional strategy using structural equation modeling .  Admittedly, with only five items 

this is not the best SEM example.  For our analysis we examine one factor and multiple two factor models.  The 

two factor models are made up of every possible combination of two- and three-item factors (i.e., pass 1: factor I 

consists of items 1 and 2, factor II is identified by items 3-5; pass 2: factor I is defined in terms of items 1 and 3, 

factor II consists of items 2, 4, and 5, etc.).  This latter (exploratory) approach is adopted because there is no 

theory or rationale to indicate which items should load on which factor.  (If one had theory to guide the model 

development, then the process would be modified to incorporate this information.)   

Each model produces a set of fit indices that are compared across the one- and two-factor models to obtain 

evidence supporting or disconfirming a unidimensional latent space.  To perform the analyses MPLUS is used.  

The results are presented in Table C.2.  The values of the fit measures (RMSEA, SRMR and TLI and given 

current guidelines for "good" fit: RMSEA < 0.06, SRMR < 0.09, and TLI > 0.96) indicate that both the one- and 

two factor models are acceptable.  These results seem to indicate that the unifactor model fits the data 

reasonably well.  In addition, the factor intercorrelations for the two-factor model are, in general, greater than 
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0.929.  This also points toward a one factor model.  Therefore, consistent with the previous dimensionality 

analyses it appears appropriate to proceed with our IRT calibration.  In addition, a validity study of the 

calibration θ̂ s would provide useful information as part of the dimensionality analysis.  It should be noted that if 

the analysis had indicated that a particular two-factor model fit better (significantly or meaningfully) than the 

other models, then one would have some evidence indicating that there are two latent variables underlying our 

data.  A validity study should also support this interpretation.   

 

Table C.2. SEM One- and Two-Factor Model Results. 
 
Normal Theory ML and Satorra-Bentler Robust Statistics 
  
One Factor Model         
       Scaling Normal Theory 
  Χ2 CFI TLI RMSEA SRMR Factor ML Χ2 
         
  111.414 0.988 0.977 0.033 0.014 1.06 118.063 
         
     
 
Two Factor Model          
 Scaling 
I Items II Items Χ2 CFI TLI RMSEA SRMR rI,II Factor 

         
1, 2 3, 4, 5 107.411 0.989 0.972 0.036 0.013 0.967 1.061   
1, 3 2, 4, 5 109.543 0.988 0.971 0.037 0.013 0.976 1.053   
1, 4 2, 3, 5 113.458 0.988 0.970 0.037 0.014 0.999 1.041   
1, 5 2, 3, 4 101.108 0.989 0.973 0.035 0.013 1.000 1.044 *  
2, 3 1, 4, 5 92.661 0.990 0.976 0.034 0.012 0.929 1.056   
2, 4 1, 3, 5 94.530 0.990 0.975 0.034 0.013 1.000 1.089 *  
2, 5 1, 3, 4 95.853 0.990 0.975 0.034 0.013 1.000 1.068 *  
3, 4 1, 2, 5 60.584 0.994 0.984 0.027 0.010 1.000 1.063 *  
3, 5 1, 2, 4 112.237 0.988 0.970 0.037 0.014 1.000 1.051 *  
4, 5 1, 2, 3 29.015 0.997 0.993 0.018 0.007 0.842 1.037   
         
              
Chi-Square Difference Tests 
  Normal Theory Difference Test  Χ2 Difference 
I Items II Items ML Χ2 Scaling Factor Difference Test p 
         
1, 2 3, 4, 5 113.979 1.056 3.867 0.049 
1, 3 2, 4, 5 115.329 1.088 2.513 0.113 
1, 4 2, 3, 5 118.059 1.136 0.004 0.953 
1, 5 2, 3, 4 105.575 1.124 11.110 0.001 
2, 3 1, 4, 5 97.854 1.076 18.782 0.000 
2, 4 1, 3, 5 102.921 0.944 16.040 0.000 
2, 5 1, 3, 4 102.37 1.028 15.266 0.000 
3, 4 1, 2, 5 64.401 1.048 51.204 0.000 
3, 5 1, 2, 4 117.974 1.096 0.081 0.776 
4, 5 1, 2, 3 30.089 1.152 76.366 0.000 
         
 
*Factor correlation exceeded 1.0 
rI,II: Factor intercorrelation         
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Robust Weighted Least Squares 
  
One Factor Model         
  Χ2 CFI TLI RMSEA SRMR  
         
  61.339 0.995 0.992 0.024 0.022 
         
     
 
Two Factor Model          
  
I Items II Items Χ2 CFI TLI RMSEA SRMR rI,II  

         
1, 2 3, 4, 5 55.280 0.996 0.991 0.026 0.022 0.963  
1, 3 2, 4, 5 58.549 0.995 0.991 0.026 0.022 0.981  
1, 4 2, 3, 5 62.445 0.995 0.990 0.027 0.022 0.993  
1, 5 2, 3, 4 37.398 0.996 0.993 0.024 0.019 1.000 * 
2, 3 1, 4, 5 54.884 0.996 0.991 0.025 0.021 0.962  
2, 4 1, 3, 5 53.584 0.996 0.992 0.025 0.021 1.000 * 
2, 5 1, 3, 4 52.999 0.996 0.992 0.025 0.021 1.000 * 
3, 4 1, 2, 5 34.108 0.997 0.995 0.020 0.017 1.000 * 
3, 5 1, 2, 4 60.225 0.995 0.991 0.027 0.022 0.993  
4, 5 1, 2, 3 17.408 0.999 0.998 0.013 0.012 0.885  
         
         
*Factor correlation exceeded 1.0 
rI,II: Factor intercorrelation   

 

 
Summary 

We have analyzed our mathematics data using three different approaches.  All of our approaches have 

converged to provide evidence supporting the use of a unidimensional model.  For those situations where one 

has evidence that supports a multidimensional latent space there are a couple of strategies that one might 

consider depending on the form of multidimensionality.  For instance, when items are associated with different 

latent variables one could perform separate calibrations for each latent variable utilizing only the items defining 

a particular latent variable.  In short, one decomposes the instrument into unidimensional components and 

applies a unidimensional IRT model to each component.  In this case, each person would have a profile of θ̂ s 

describing his or her locations on the different latent variables.  Whether it is meaningful to form a composite of 

these θ̂ s so that each person has a single value is context specific as well as validity issue.  As has been 

mentioned in the text, to the extent that the various dimensions are not orthogonal, then this approach of creating 

a set of unidimensional scales may not completely capture all the available information about the individuals.  A 

second form of multidimensionality is, in effect, the opposite of the first.  That is, in this case it is not possible to 
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decompose the instrument into unidimensional components because the latent variables' interaction is 

manifested in the observed data.  In this case, the use of a multidimensional IRT (Chapter 10) may be fruitful.   

Endnotes 

 

1The correlation matrix is obtained by calculating all pairwise Pearson correlations.  Because the data are 

dichotomous this results in a matrix of phi correlation coefficients.  A phi correlation coefficient is the 

application of the Pearson product-moment correlation to data that are true dichotomies.  A variable is said to be 

a true dichotomy when it has only two possible values.  The variables gender and cell phone ownership would 

be examples of true dichotomies.  As such, the relationship between gender (i.e., male/female) and cell phone 

ownership (i.e., Yes/No) may be assessed using a phi coefficient.  In addition, the linear factor analysis of a 

tetrachoric correlation matrix instead of a phi correlation matrix has also been recommended for dimensionality 

assessment; the tetrachoric correlation coefficient is discussed in Appendix E: Using Principal Axis for 

Estimating Item Discrimination.  However, as is the case with the factor analysis of phi coefficients, it is still 

possible to observe difficulty factors with the factor analysis of a tetrachoric correlation matrix (Gourlay, 1951).  
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