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Example: Application of the NR Model to a Science Test, MMLE, MULTILOG 

The data for our example come from the Third International Mathematics and Science Study 

(TIMSS; Gonzalez et al., 1998) database. Using the responses from the 1995 Canadian 

examinees, four physical science items were selected. Three of the items are in a multiple-choice 

format (four options), whereas the fourth item is open-ended and scored using a four-point 

rubric. The three multiple-choice items’ options constitute nominal response categories, and we 

initially treat the fourth item as such.  The responses to each item are labeled 1 through 4. It 

should be noted that the toolbox of model–data fit methods summarized in Chapter 6 is still 

relevant and would be used in practice.  We assume a unidimensional latent space and 

conditional independence.  

Rather than analyzing individual case data in this example, we use pattern data.  With four 

items, each with four possible “options,” there are 44 = 256 possible patterns (i.e., number of 

patterns = mL). Of these 256 possible patterns we observed 233. The observed patterns indicate 

that for each item there is a response to each option. We use MULTILOG for calibrating these 

data. As mentioned in Chapter 8, when pattern data are calibrated MULTILOG automatically 

produces the EAP ̂ .  

The command file for the NR model calibration of the physical science test is shown in 

Table 1.  Most of this file is described in Chapters 7 and 8.  On the PROBLEM line we use 

PATTERNS to indicate the calibration of pattern data and NPATTERNS to specify the number of 

patterns. On the TEST line we specify that each of the four items consists of four response 

categories (i.e., NC=(4(0)4)) as well as which option has the highest frequency for each item 

(i.e., HIGH=(2,3,4,3)).  For example, the HIGH subcommand indicates that item 1’s highest 

frequency is category 2; that for item 2, category 3 has the highest frequency; and so on. (These 
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highest frequency categories specify the item’s baseline response category.)  In our example the 

HIGH category is also the correct response.  We set the number of EM cycles to 500 and the 

number of M-STEPS to 25 by using subcommands NC=500 and IT=25, respectively, on the 

EST line.  Similar to what has been done in previous examples, the unique response pattern and 

its frequency are used as the person identification field.  Therefore, the FORTRAN format’s first 

field (9A1) refers to the person identification field, the actual item responses occupy the first 

four columns and are read by 4A1, and the field F5.0 is used to read the pattern frequencies. 

 

Table 1. Command file for MULTILOG NR model calibration example.
a
 

  
MULTILOG for Windows 7.00.2327.2 
NR CALIBRATION, 4 PHYSICAL SCIENCE ITEMS 
>PROBLEM RANDOM,  
         PATTERNS,   Specification that pattern data is being used 
         DATA = 'C:SCIENCE.PAT',  
         NITEMS = 4,  
         NGROUPS = 1,  

         NPATTERNS = 256,   Number of possible patterns
b
 

         NCHARS = 9; 
>TEST ALL,     
      NOMINAL,   Specification of NR model 
      NC = (4(0)4),  
      HIGH = (2,3,4,3);  Ordinal position of highest frequency category 
>EST NC=500 IT=25;  Changing the number of EM and M‐Step iterations  
>END ; 
4  Number of response categories  
1234  The response code line 
1111  The 1s are coded to be 1s for all four items 
2222  The 2s are coded to be 2s for all four items 
3333  The 3s are coded to be 3s for all four items 
4444  The 4s are coded to be 3s for all four items 
(9A1,T1,4A1,F5.0)  

  
a
The text following the '' is provided to help the reader understand the corresponding input. 

b
The nonobserved patterns are added to the data file with corresponding frequencies of zero. 

 

Table 2 contains the abridged output. With four 4-option items there are L*2(m – 1) = 

4*2(3) = 24 parameters being estimated and we see that this is the value on the NUMBER OF 

FREE PARAMETERS line.  The identification field shows that the first observation is the pattern 

1111 and that this pattern occurred once in the data.  Convergence is achieved in 29 cycles.  
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Table 2. Abridged output from NR model calibration example. 
  

 : 
<echo of command file> 
  NUMBER OF FREE PARAMETERS IS:   24 
 : 
 FIRST OBSERVATION AS READ- 
  
 ID    1111    1 
 ITEMS 1111 
 NORML      0.000 
 WT/CR       1.00 
 
 FINISHED CYCLE 29 
 MAXIMUM INTERCYCLE PARAMETER CHANGE=   0.00082 P(  21) 
 : 
 ITEM SUMMARY 
 : 
 ITEM   1:       4 NOMINAL CATEGORIES,  2 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)      0.18   0.61  -0.37  -0.42 
    C(K)      0.18   0.55  -0.56  -0.16 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[ DEV.]  P(#)  COEFF.[ DEV.] 
      1       1   0.44 (0.09)      4   0.37 (0.08) 
      2       2  -0.55 (0.12)      5  -0.74 (0.11) 
      3       3  -0.60 (0.11)      6  -0.34 (0.10) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.077  0.086  0.096  0.107  0.118  0.129  0.140  0.151 
 -1.4 -  0.0  0.161  0.170  0.178  0.183  0.187  0.188  0.187  0.184 
  0.2 -  1.6  0.179  0.172  0.163  0.153  0.143  0.132  0.121  0.110 
  1.8 -  3.0  0.100  0.090  0.081  0.073  0.065  0.058  0.052 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3      4 
  OBS. FREQ.    456    723    245    375 
  OBS. PROP.  0.2535 0.4019 0.1362 0.2084 
  EXP. PROP.  0.2535 0.4020 0.1362 0.2084 
 : 
TOTAL TEST INFORMATION 
@THETA:      INFORMATION: 
 -3.0 - -1.6  1.380  1.424  1.471  1.521  1.572  1.624  1.674  1.721 
 -1.4 -  0.0  1.763  1.797  1.822  1.837  1.841  1.834  1.817  1.792 
  0.2 -  1.6  1.759  1.722  1.681  1.638  1.595  1.551  1.509  1.468 
  1.8 -  3.0  1.429  1.392  1.358  1.325  1.295  1.268  1.242 
 : 
MARGINAL RELIABILITY:    0.4142 
 : 
 OBSERVED(EXPECTED)    STD.  :     EAP (S.D.)  :  PATTERN 
                       RES.  :                 : 
  
      1.0(     0.7)    0.40  :   -0.97 ( 0.75) :  1111 
      2.0(     0.8)    1.33  :   -0.45 ( 0.75) :  1112 
      0.0(     1.0)   -1.01  :   -0.61 ( 0.75) :  1113 
      2.0(     0.5)    2.00  :   -0.18 ( 0.75) :  1114 
 : 
 NEGATIVE TWICE THE LOGLIKELIHOOD=       288.4 
 (CHI-SQUARE FOR SEVERAL TIMES MORE EXAMINEES THAN CELLS) 

  

 

In the ITEM SUMMARY section we find our item parameter estimates.  For item 1 there are 
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four possible options (i.e., 4 NOMINAL CATEGORIES) and the response of 2 has the highest 

frequency (i.e., 2 HIGH); this option is also the correct option. The constrained category 

discrimination parameter estimates are read from the A(K) line. That is, 11̂  = 0.18, 12̂ = 0.61, 

13̂ = –0.37, and 14̂  = –0.42 or α̂  = (0.18, 0.61, –0.37, –0.42).  The constrained intercept 

estimates are listed on the C(K) line with 11̂  = 0.18, 12̂  = 0.55, 13̂  = –0.56, and 14̂  = –0.16 or 

γ̂    = (0.18, 0.55, –0.56, –0.16).  The unconstrained discrimination and intercept parameters are 

found in the section labeled CONTRAST-COEFFICIENTS (STANDARD ERRORS).  The 

columns labeled A and C contain the jm  – 1 discrimination and intercept parameter estimates, 

respectively.  For example, for item 1 option 1 we have 11
ˆ u = 0.44 and 11ˆu = 0.37.  

Following the unconstrained parameter estimate section are the item’s information values. 

These would be interpreted as done in Chapter 7. For this item as well as for the other items, we 

can see that the expected and observed proportions show good agreement for all categories (i.e., 

the difference between OBS. FREQ. and EXP. PROP. is about 1/10,000th).  

In some situations one or more of an item’s response categories may not be attractive and 

may never be chosen. These are sometimes referred to as null categories. In these cases one does 

not have data to estimate the category’s parameters. In short, the item is functioning with fewer 

categories than are specified for the calibration. This situation would reveal itself by the null 

category’s corresponding observed proportion and frequency being zero, as well as by the 

absence of an ORF for the null category in the item’s ORF plot. If a null category occurs, then 

one should ignore the null category’s parameter estimates and recalibrate the item set specifying 

the appropriate number of observed categories for each item. For instance, assume that item 4’s 

fourth option is not selected by any individuals. Therefore, this item is functioning as a three-
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category item. To specify that item 4 has only three observed categories, we change the NC 

specification on the TEST line to indicate three categories for item 4 (i.e., NC = (4,4,4,3)); 

in this case the corresponding HIGH category identification does not need to be changed (i.e., 

HIGH = (2,3,4,3)).  

The parameter estimates for all the items are presented in Table 3.  As would be expected, 

the sum of the constrained ˆ jk s for an item is 0.0 and this is also the case for an item’s ˆ jk s. 

Looking at item 1, one sees that category 2 does the best of the item’s response categories in 

discriminating among the individuals ( 12̂ = 0.61) and it is also the most attractive ( 12̂  = 0.55). 

Because the  s are associated with category frequencies, the category with the largest frequency 

has the largest positive   and the category with smallest frequency is associated with the most 

negative  .  (If a category has its α equal to zero, then its corresponding   is poorly defined 

and has a tendency to drift. In this situation the calibration may not converge, but according to 

Thissen there is little loss of fit by allowing the calibration to stop because of reaching the 

maximum number of iterations.) The –2lnL for this calibration is 288.4 (BIC = 468.2797); we 

use the -2lnL value below.  

The corresponding ORFs for item 1 (Figure 1, left panel) shows that category 2 is most 

useful for persons located above approximately –0.69 and that category 4 is attractive for persons 

located below approximately –0.69. That is, the intersection between categories 2 and 4 is 

 2,4

0.55 ( 0.16)
0.69

0.42 0.61
  

  
 

 

 

Table 3. Constrained Item Parameter Estimates for Science Items - NR Model. 
  

  Discrimination Intercept  
Item  1

ˆ
j   2

ˆ
j   3

ˆ
j   4

ˆ
j   1

ˆ
j   2

ˆ
j   3

ˆ
j   4

ˆ
j  
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1 0.18 0.61 -0.37 -0.42 0.18 0.55 -0.56 -0.16 
2 -0.07 -0.29 0.54 -0.18 -1.19 -0.03 0.76 0.46 
3 -0.45 -0.66 0.29 0.82 -0.76 -0.47 0.53 0.70 
4 -0.73 -0.18 -0.10 0.66 -0.58 0.25 0.33 0.00 
  

 

MULTILOG’s graph uses a red line to identify the HIGH category (i.e., category 2). 

According to the ORF pattern this item functions primarily as a two-category item with 

categories 2 and 4 being the primary categories.  The item’s information function (Figure 1, right 

panel) shows that this item is most useful for estimating persons located around –0.5. 

 

Figure 1. ORFs and item information function for item 1. 

 

 

The matrix plot feature simultaneously presents the ORFs for all the items and is shown in 

Figure 2. This figure shows that item 2 (top right) is behaving as a binary item. The relatively 

“flat” ORF reflects a category (specifically, category 1) that is not very discriminating (this is 

also reflected in its 21̂  = –0.07) and is not, comparatively speaking, attracting very many 

respondents; the latter interpretation comes from the magnitude of its 21̂  = –1.19. Item 3 is 
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functioning as a three-, not four-, category item. As mentioned in previous chapters, a fit analysis 

should involve a comparison of empirical and predicted ORFs.  The program MODFIT could be 

used for this purpose with the NR model. 

 

Figure 2. ORFs for all four items, NR model calibration.   

 

 

 

Example: Mixed Model Calibration of the Science Test—NR and PC Models, MMLE, 

MULTILOG  

The calibration examples in the previous chapters have applied a single model to an 

instrument because the instrument used a single-item response format. However, some 

instruments may contain various response formats. In these cases, and provided that the IRT 

assumptions are met for the entire instrument, one may apply multiple models to the data and 

still perform a single calibration of the instrument. In this example we apply two models, the NR 



8 
 

 

and PC models, to the science test. As previously mentioned, the PC model is subsumed by the 

NR model. Therefore, this mixed model calibration involves a nested model and we are able to 

compare the fit of this mixed model calibration with that of the NR model calibration.1 

In the previous example we mentioned that item 4 is an open-ended question. This question 

is concerned with whether the combined weight of two objects would change if one object is 

placed inside the other as opposed to remaining separate.  The rubric identified the correct 

answer and various incorrect answers.  One may consider some of these incorrect answers to 

reflect a better understanding of the physical sciences than do the other incorrect answers.  For 

example, answering that the combined weight is zero when one of the objects is placed inside the 

other reflects a greater lack of understanding than some nonzero value.  Therefore, responses to 

this item are scored by giving no credit, varying degrees of partial credit, and full credit. In this 

example we treat this item as a four-category partial credit item.  Specifically, a value of 4 is 

assigned to a correct response, a value of 3 for a partially correct response, a value of 2 for a 

response that does not indicate an understanding as good as a value of 3, and a 1 for an incorrect 

response.  We could have coded these as 3, 2, 1, and 0, respectively.  However, we would then 

have had to recode these values to be 1 through 4 to perform a PC model calibration because a 

code of 0 is used internally by MULTILOG.  To summarize our data, items 1 through 3 are 

considered to be nominally scored and item 4 is scored in a graded fashion.  To accommodate 

these different scoring paradigms we apply two models to the four-item instrument.  The NR 

model is used for items 1 through 3 and the PC model is applied to item 4.  The command file for 

this calibration is shown in Table 4. 

 

Table 4. Command file for the NR and PC mixed model calibration.
a
 

  
MULTILOG for Windows 7.00.2327.2 
MIX NR & PC MODELS; ITEM 4 - PC MODEL 
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>PROBLEM RANDOM,  
         PATTERNS,  
         DATA = 'C:SCIENCE.PAT',  
         NITEMS = 4,  
         NGROUPS = 1,  
         NPATTERNS = 256,  
         NCHARS = 9; 
>TEST ALL,     
      NOMINAL,  
      NC = (4(0)4),   That is,  NC = (4, 4, 4, 4) 
      HIGH = (2,3,4,4);  
>TMATRIX ITEMS=4,AK,POLYNOMIAL;  This line and the next 2 impose the constraints  
>FIX     ITEMS=4,AK=(2,3),VALUE=0.0;  on the NR model to obtain the PC model 
>TMATRIX ITEMS=4,CK,TRIANGLE;    
>EST NC=500 IT=25;   
>END; 

 : 
  

a
The text following the '' is provided to help the reader understand the corresponding input. 

 

Because the PC model is nested within the NR model we use a single TEST line to identify 

the model, but then invoke the PC model constraints on the appropriate item (i.e., item 4). These 

constraints (i.e., the TMATRIX and FIX lines) are similar to those that we used in Chapter 7 

(Table 7.1), although the ITEMS subcommand is used in lieu of ALL to specify that the 

constraints should be applied only to item 4.  (If we had more than one item to be calibrated 

using the PC model and wanted them to all have a common ̂ , then it would be necessary to 

also include the command line >EQUAL ITEMS=<item list>, AK=1; as well as to specify the 

items with the ITEMS subcommand.)  The corresponding output is found in Table 5.  

MULTILOG took 36 cycles to achieve convergence.  For the NR model we have 2*(4 – 1) = 

6 parameters per item, and with three items this yields 18 parameters.  With the PC model there 

are 4 parameters, one   and 3 transition location parameters.  Therefore, the total number of 

parameters estimated by both models is 18 + 4 = 22.  This corresponds to the NUMBER OF 

FREE PARAMETERS listed in the output.  The estimates for items 1 through 3 are not 

dramatically different from those observed when all the items were treated nominally.  Using the 

PC model, item 4 has an estimated item discrimination of 0.33 with transition location estimates 

of 41̂ = –0.68, 42̂ = –0.10, and 43̂ = 0.28.  
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We can conceive of the NR–PC mixed model calibration as nested within the NR model 

calibration from the previous example. Calibrating all four items using only the NR model 

produced a –2lnL of 288.4 with 24 free parameters (or 256 – 24 – 1 = 231 degrees of freedom) 

and a BIC of 468.2797. With the mixed NR–PC model, calibration –2lnL increased to 320.5 with 

22 free parameters or 233 degrees of freedom; BIC = 485.3897.  The difference between these 

two -2lnLs is distributed as an 2   with two degrees of freedom (i.e., 233 – 231 = 24 – 22 = 2); 

we assume that the Full (nesting) model holds for the data.  Because the critical 2  with two 

degrees of freedom (  = 0.05) is 5.99 and the difference between the –2lnLs is 32.1, we observe 

a significant increase in misfit by using the PC model for the last item.  Furthermore, according 

to the BIC values the NR model is favored over the NR–PC mixed model calibration.  Therefore, 

from a statistical perspective the NR model calibration is preferred to the NR–PC mixed model 

calibration.  However, in some applications there may be pragmatic reasons for preferring the 

NR–PC mixed model calibration.  For example, conceptually it may be more appealing to the 

various constituencies to treat item 4 in a graded fashion, particularly in light of the fact that the 

NR model does not fit the data in an absolute sense. 

Figure 3 contains the ORFs for all the items using this mixed model approach; Figure 2 

contains the corresponding ORFs based on the NR calibration.  As would be expected, the ORFs 

for items 1 through 3 are very similar to those using the NR model.  Item 4’s ORFs show a slight 

spreading out, such that some of the response categories (e.g., category 3) have a wider   range 

over which they are the most probable response category than when the item is treated 

nominally.  

 

Table 5. Abridged output for the NR and PC mixed model calibration example. 
  

 : 
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  NUMBER OF FREE PARAMETERS IS:   22 
 : 
 FINISHED CYCLE 36 
 : 
 ITEM SUMMARY 
 : 
 ITEM   1:       4 NOMINAL CATEGORIES,  2 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)      0.21   0.68  -0.51  -0.38 
    C(K)      0.20   0.55  -0.62  -0.13 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[ DEV.]  P(#)  COEFF.[ DEV.] 
      1       1   0.47 (0.09)      4   0.36 (0.07) 
      2       2  -0.72 (0.12)      5  -0.82 (0.12) 
      3       3  -0.60 (0.11)      6  -0.33 (0.10) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.083  0.094  0.106  0.119  0.133  0.148  0.163  0.177 
 -1.4 -  0.0  0.191  0.203  0.214  0.221  0.226  0.228  0.226  0.221 
  0.2 -  1.6  0.213  0.203  0.190  0.177  0.162  0.148  0.134  0.120 
  1.8 -  3.0  0.108  0.096  0.085  0.075  0.067  0.059  0.052 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3      4 
  OBS. FREQ.    456    723    245    375 
  OBS. PROP.  0.2535 0.4019 0.1362 0.2084 
  EXP. PROP.  0.2535 0.4020 0.1362 0.2084 
 : 
ITEM   4:       4 NOMINAL CATEGORIES,  4 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)     -0.50  -0.17   0.17   0.50 
    C(K)      0.00   0.68   0.78   0.50 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[POLY.]  P(#)  COEFF.[ TRI.] 
      1      19   0.33 (0.04)     20  -0.68 (0.11) 
      2      32   0.00 (0.00)     21  -0.10 (0.09) 
      3      33   0.00 (0.00)     22   0.28 (0.09) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.078  0.082  0.086  0.089  0.093  0.097  0.100  0.103 
 -1.4 -  0.0  0.105  0.108  0.109  0.111  0.111  0.112  0.111  0.110 
  0.2 -  1.6  0.109  0.107  0.105  0.102  0.099  0.096  0.092  0.088 
  1.8 -  3.0  0.084  0.080  0.076  0.072  0.068  0.065  0.061 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3      4 
  OBS. FREQ.    288    507    551    453 
  OBS. PROP.  0.1601 0.2818 0.3063 0.2518 
  EXP. PROP.  0.1601 0.2818 0.3063 0.2518 
 : 
MARGINAL RELIABILITY:    0.3945 
 : 
 OBSERVED(EXPECTED)    STD.  :     EAP (S.D.)  :  PATTERN 
                       RES.  :                 : 
      1.0(     0.6)    0.51  :   -0.83 ( 0.77) :  1111 
      2.0(     0.9)    1.10  :   -0.64 ( 0.76) :  1112 
      0.0(     0.9)   -0.93  :   -0.44 ( 0.76) :  1113 
      2.0(     0.6)    1.85  :   -0.25 ( 0.77) :  1114 
 : 
 NEGATIVE TWICE THE LOGLIKELIHOOD=       320.5 
 (CHI-SQUARE FOR SEVERAL TIMES MORE EXAMINEES THAN CELLS) 
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Figure 3. ORFs for all four items from the NR and PC mixed model calibration. 

' 

 

Example: NR and PC Mixed Model Calibration of the Science Test, Collapsed Options, 

MMLE, MULTILOG  

Inspection of the science test items’ ORFs (e.g., Figure 2) indicate that item 2 contains a 

response option that is not very informative.  Specifically, option 1 shows little discrimination 

capacity, and this option’s frequency is substantially smaller than those of the item’s other 

response options. As such, it is not very attractive to the examinees. Therefore, unless there are 

substantive reasons for maintaining four options for this item, one might consider collapsing 

option 1 with another option.  In this example, we collapse item 2’s option 1 with its option 2.  

As a result, the test consists of items 1 and 3, each with four nominal response options, item 2 

with three nominal response options, and item 4 with four graded options. As in the previous 

example, the NR model is used for items 1 through 3, whereas the PC model is applied to item 4.  

Although we can edit the data file and recode item 2’s options (i.e., option 2 becomes 1, option 3 
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becomes 2, and option 4 becomes 3), it is less error-prone to have MULTILOG do the recoding. 

The recoding within MULTILOG is performed similarly to what is done in the PC model 

calibration example (see MULTILOG_PCMcalibrationEx.pdf).  That is, in the command file 

section that specifies which codes to use for which items, one substitutes the new codes for the 

old response codes.  Recall that this section’s format is that the columns represent the items and 

the rows represent each identified response code.  Here is the basic structure of the command 

file’s response code section: 

         : 
Number of response categories ⇒     4 
Response code line (i.e., the codes in the data) ⇒   1234 
Codes to use for the identified response of “1” for each item ⇒  1111 
Codes to use for the identified response of “2” for each item ⇒  2122 
Codes to use for the identified response of “3” for each item ⇒  3233 
Codes to use for the identified response of “4” for each item ⇒  4344 
         : 
          ⇑ 
     Columns represent items 1 through 4 

 

In the current context, the second column (representing item 2) reflects the recoding of the 

observed codes of 4, 3, and 2 to be 3, 2, and 1, respectively (i.e., item 2’s original response codes 

become 1, 2, and 3).  After this recording, item 2 consists of three response categories, and this is 

reflected in the NC as well as the HIGH specifications on the TEST command line.  The 

command file for this analysis is shown in Table 6, with the corresponding abridged output in 

Table 7.  

Convergence is achieved in 36 cycles.  The number of parameters estimated is 20 (i.e., 2(3 – 

1) = 4 for item 2, 4 for item 4 , plus 12 for items 1 and 3).  The item parameter estimates for 

items 1, 3, and 4 are, within rounding, the same as those from the NR–PC mixed model 

calibration.  The combining of item 2’s options 1 and 2 results in the item’s OBS. FREQ of 457. 

Because this number reflects the sum of the uncombined options 1 and 2’s frequencies, we have 
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assurance that the options were correctly combined.  The previous calibration showed that the 

standard errors for the item parameter estimates were in the range of 0.15 to 0.16.  As can be 

seen, by combining these two options the standard errors have decreased to the range of 0.08 to 

0.09.  Therefore, by combining these low-frequency options we are able to obtain more accurate 

estimates.  For completeness the ORFs are presented in Figure 4.  As would be expected, except 

for item 2, these match those presented in Figure 3.  Items 1 and 2 still show that they are 

behaving in a binary fashion (i.e., in general, examinees are either correctly answering the 

question or they are not).  In the Appendix Example: Mixed Model Calibration of the Science 

Test—NR and 2PL Models, MMLE, MULTILOG we explore the effect of dichotomizing items 

1 and 2.  

 

Table 6. Command file for the NR and PC mixed model calibration; Collapsed Options.
a
 

  
MULTILOG for Windows 7.00.2327.2 
MIX NR & PC MODELS; ITEM 4 PC MODEL; ITEM 2-3 OPTIONS 
>PROBLEM RANDOM,  
         PATTERNS,  
         DATA = 'C:SCIENCE2.PAT',  
         NITEMS = 4,  
         NGROUPS = 1,  
         NPATTERNS = 256,  
         NCHARS = 9; 
>TEST ITEMS=(1,2,3,4),  
      NOMINAL,  
      NC = (4,3,4,4),  
      HIGH = (2,2,4,4); 
>TMATRIX ITEMS=4,AK,POLYNOMIAL; 
>FIX     ITEMS=4,AK=(2,3),VALUE=0.0; 
>TMATRIX ITEMS=4,CK,TRIANGLE;  
>EST NC=500 IT=25; 
>END ; 
4  Number of response categories  
1234  The response code line 
1111  Response code substitution for item 2: 1 stays as 1 
2122  Response code substitution for item 2: 2 becomes a 1 
3233  Response code substitution for item 2:  3 becomes a 2 
4344  Response code substitution for item 2: 4 becomes a 3 
(9A1,T1,4A1,F5.0) 

  
a
The text following the '' is provided to help the reader understand the corresponding input. 

 

Rather than using MULTILOG to recode item 2, if one edits the original response data to 
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recode item 2 to have the three response categories described above, then one obtains 192 

patterns.  The calibration of these data yields the same item parameter estimates as shown in 

Table 7.  However, we now obtain a valid –2lnL of 219.6 with a BIC of 369.4997 and 20 

estimated parameters. These values reflect a substantial improvement in fit over simply using 

only the NR model or the mixed NR–PC model’s calibrations.  

 

Table 7. Abridged output for the NR and PC mixed model calibration example; Collapsed 
Options. 

  
 : 
  NUMBER OF FREE PARAMETERS IS:   20 
 : 
 FIRST OBSERVATION AS READ- 
  
 ID    1111    4 
 ITEMS 1111 
 NORML      0.000 
 WT/CR       4.00 
 
 FINISHED CYCLE  36 
 : 
 ITEM SUMMARY 
 : 
 ITEM   1:       4 NOMINAL CATEGORIES,  2 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)      0.20   0.68  -0.50  -0.38 
    C(K)      0.20   0.55  -0.62  -0.13 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[ DEV.]  P(#)  COEFF.[ DEV.] 
      1       1   0.48 (0.09)      4   0.36 (0.09) 
      2       2  -0.70 (0.12)      5  -0.81 (0.12) 
      3       3  -0.58 (0.11)      6  -0.33 (0.10) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.081  0.092  0.104  0.117  0.130  0.144  0.159  0.173 
 -1.4 -  0.0  0.187  0.199  0.210  0.218  0.223  0.225  0.224  0.220 
  0.2 -  1.6  0.212  0.203  0.191  0.178  0.164  0.150  0.136  0.123 
  1.8 -  3.0  0.110  0.098  0.087  0.077  0.068  0.061  0.054 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3      4 
  OBS. FREQ.    456    723    245    375 
  OBS. PROP.  0.2535 0.4019 0.1362 0.2084 
  EXP. PROP.  0.2535 0.4020 0.1362 0.2084 
 
 
 ITEM   2:       3 NOMINAL CATEGORIES,  2 HIGH 
  CATEGORY(K): 1      2      3 
    A(K)     -0.25   0.45  -0.20 
    C(K)     -0.25   0.28  -0.03 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[ DEV.]  P(#)  COEFF.[ DEV.] 
      1       7   0.71 (0.09)      9   0.52 (0.08) 
      2       8   0.06 (0.09)     10   0.21 (0.09) 
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 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.038  0.043  0.047  0.052  0.058  0.063  0.069  0.075 
 -1.4 -  0.0  0.081  0.087  0.092  0.098  0.102  0.106  0.110  0.112 
  0.2 -  1.6  0.114  0.114  0.114  0.112  0.110  0.106  0.102  0.098 
  1.8 -  3.0  0.092  0.087  0.081  0.075  0.069  0.063  0.058 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3 
  OBS. FREQ.    457    785    557 
  OBS. PROP.  0.2540 0.4364 0.3096 
  EXP. PROP.  0.2540 0.4364 0.3096 
 : 
 ITEM   4:       4 NOMINAL CATEGORIES,  4 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)     -0.50  -0.17   0.17   0.50 
    C(K)      0.00   0.68   0.78   0.50 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[POLY.]  P(#)  COEFF.[ TRI.] 
      1      17   0.33 (0.04)     18  -0.68 (0.11) 
      2      29   0.00 (0.00)     19  -0.10 (0.09) 
      3      30   0.00 (0.00)     20   0.28 (0.09) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.078  0.082  0.086  0.090  0.094  0.097  0.101  0.104 
 -1.4 -  0.0  0.106  0.108  0.110  0.111  0.112  0.112  0.112  0.111 
  0.2 -  1.6  0.110  0.108  0.106  0.103  0.100  0.096  0.093  0.089 
  1.8 -  3.0  0.085  0.081  0.077  0.073  0.069  0.065  0.061 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3      4 
  OBS. FREQ.    288    507    551    453 
  OBS. PROP.  0.1601 0.2818 0.3063 0.2518 
  EXP. PROP.  0.1601 0.2818 0.3063 0.2518 
 : 
 @THETA:      INFORMATION: 
 -3.0 - -1.6  1.315  1.353  1.395  1.440  1.487  1.536  1.586  1.633 
 -1.4 -  0.0  1.677  1.714  1.743  1.763  1.772  1.770  1.758  1.737 
  0.2 -  1.6  1.708  1.673  1.634  1.593  1.551  1.510  1.469  1.430 
  1.8 -  3.0  1.393  1.359  1.327  1.297  1.270  1.244  1.222 
 : 
 MARGINAL RELIABILITY:    0.3938 
 : 
 OBSERVED(EXPECTED)    STD.  :     EAP (S.D.)  :  PATTERN 
                       RES.  :                 : 
  
      1.0(     3.0)   -1.14  :   -0.94 ( 0.77) :  1111 
      2.0(     4.4)   -1.15  :   -0.75 ( 0.77) :  1112 
      0.0(     3.9)   -1.99  :   -0.55 ( 0.77) :  1113 
      2.0(     2.6)   -0.35  :   -0.35 ( 0.77) :  1114 
 : 
NEGATIVE TWICE THE LOGLIKELIHOOD=      -171.2 
 : 

  

 

 

Figure 4. ORFs for all four items from the NR and PC mixed model calibration; Item 2: 

Collapsed Options. 
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NOTES 

1. It is possible to use non-nested mixed models in a single calibration. For instance, we 

might use the GR model instead of the PC model for this example.  However, because the 

example treats only one item in a graded fashion, there is no inherent benefit in using a model 

that allows items to vary in their discrimination over a model that constrains them to all be the 

same.  We present the NR and GR mixed model calibration for the science test in the Appendix 

Example: Mixed Model Calibration of the Science Test—NR and GR Models, MMLE, 

MULTILOG. 
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Appendix 

Example: Mixed Model Calibration of the Science Test—NR and 2PL Models, MMLE, 

MULTILOG 

The analysis of the ORFs for the item set in Chapter 9 (Figure 2) indicates that the first two 

items were behaving in a binary fashion.  Therefore, in an attempt to improve the fit to the data 

the first two items are scored correct (i.e., a coded response of 1) and incorrect (i.e., a coded 

response of 0); we assume that there are no other reasons to keep these items’ responses as 

polytomous data. As a result, the first two items are modeled with the 2PL model and the last 

two are modeled with the NR model.  Although theoretically the 2PL model is subsumed by the 

NR model, MULTILOG’s implementation does not allow the NR model calibration of items 

with fewer than three options; MULTILOG estimates the 2PL model as a special case of the GR 

model.  Therefore, it is necessary to use two TEST lines to identify the items associated with the 

2PL and NR models (see Table 8 for the command file).  The first TEST line specifies the use of 

the 2PL model with items 1 and 2, whereas the second TEST line indicates the use of the NR 

model with items 3 and 4.  After the dichotomization of the responses for items 1 and 2 there are 

64 possible patterns across the item set, all of which are observed.  Table 9 contains the abridged 

output.  

 

Table 8. Command file for the NR and 2PL mixed model calibration.
a
 

  
MULTILOG for Windows 7.00.2327.2 
2PL CALIBRATION OF ITEMS 1 & 2; NR FOR ITEMS 3 & 4 
>PROBLEM RANDOM,  
         PATTERNS,  
         DATA = 'C:CompPatMix.PAT',  
         NITEMS = 4,  
         NGROUPS = 1,  
         NPATTERNS = 64,  
         NCHARS = 9; 
>TEST ITEMS = (1, 2),   Identifying items 1‐2 for calibration with 2PL 
      L2;     
>TEST ITEMS = (3, 4),  Identifying items 3‐4 for calibration with NR  
      NOMINAL,     
      NC = (4, 4),  
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      HIGH = (4, 3); 
>EST NC=500 IT=25; 
>END ; 
4 
1234 
1111 
2222 
0033 
0044 
(9A1,T1,4A1,F5.0) 

  
a
The text following the '' is provided to help the reader understand the corresponding input. 

 
 

Convergence is achieved in 26 cycles.  Using the 2PL model, item 1 has an estimated 

item discrimination of 0.74 and a location estimate of 0.60, whereas for item 2, 2̂  = 0.81 

and 2̂  = 0.36.  Because of a difference in the metrics of the NR model-only calibration and 

the way this mixed model calibration is implemented, we do not expect the item parameter 

estimates for items 3 and 4 to be the same as those resulting from NR model-only calibration. 

The –2lnL for this NR-2PL mixed model calibration is 51.8 with 16 free parameters (BIC = 

171.7198).  This –2lnL of 51.8 reflects a substantial improvement in fit over simply using the 

NR model for calibrating all four items. If there were no substantive reasons for treating the 

first two items as polytomous, then from simply a fit perspective items 1 and 2 should be 

treated as binary items.  However, the cost of doing this is an instrument that provides less 

information below approximately 0.8 than when we calibrate it using solely the NR model 

(see Tables 2 and 4’s TOTAL TEST INFORMATION sections). (The similarity in the 

estimates for items 3 and 4 from this calibration and those from the NR model-only 

calibration indicates that the metrics are in close alignment to one another, so the value 0.8 

would not change by very much if the metrics are linked to one another.)  Therefore, the 

accuracy of the location estimates for individuals less than 0.8 would be less with the mixed 

model approach than with the single NR model item parameter estimates. This begs the 

question, “Is it better to use more accurate person location estimates based on a 
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comparatively poorer-fitting model or to use less accurate ˆs  based on a better-fitting 

model?”  If the purpose of the calibration is to estimate   (in contrast to, for example, item 

pool construction), then the answer to this question would hinge, at least in part, on the 

validity evidence for the ˆs  based on the mixed model and on the NR model calibration 

results.  

 
Table 9. Abridged output for the NR and 2PL mixed model calibration example. 
  

 : 
  NUMBER OF FREE PARAMETERS IS:   16 
 : 

 FIRST OBSERVATION AS READ- 
  
 ID    2211    1 
 ITEMS 2211 
 NORML      0.000 
 WT/CR       1.00 
  : 
FINISHED CYCLE  26 
 MAXIMUM INTERCYCLE PARAMETER CHANGE=   0.00077 P(   7) 
 
 ITEM SUMMARY 
 : 

 ITEM   1:       2 GRADED CATEGORIES 
        P(#) ESTIMATE (S.E.) 
 A         1    0.74  (0.08) 
 B( 1)     2    0.60  (0.10) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.033  0.038  0.043  0.048  0.054  0.061  0.067  0.075 
 -1.4 -  0.0  0.082  0.090  0.097  0.105  0.112  0.119  0.124  0.129 
  0.2 -  1.6  0.133  0.135  0.136  0.135  0.133  0.129  0.125  0.119 
  1.8 -  3.0  0.112  0.105  0.098  0.090  0.082  0.075  0.068 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2 
  OBS. FREQ.   1076    723 
  OBS. PROP.  0.5981 0.4019 
  EXP. PROP.  0.5981 0.4019 
 
 ITEM   2:       2 GRADED CATEGORIES 
        P(#) ESTIMATE (S.E.) 
 A         3    0.81  (0.08) 
 B( 1)     4    0.36  (0.08) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 : 

  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2 
  OBS. FREQ.   1014    785 
  OBS. PROP.  0.5636 0.4364 
  EXP. PROP.  0.5636 0.4364 
 
 ITEM   3:       4 NOMINAL CATEGORIES,  4 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)     -0.49  -0.54   0.29   0.74 
    C(K)     -0.80  -0.41   0.51   0.70 
 : 

  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
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  CATEGORY(K):  1      2      3      4 
  OBS. FREQ.    192    293    564    750 
  OBS. PROP.  0.1067 0.1629 0.3135 0.4169 
  EXP. PROP.  0.1067 0.1628 0.3135 0.4170 
 
ITEM   4:       4 NOMINAL CATEGORIES,  3 HIGH 
  CATEGORY(K): 1      2      3      4 
    A(K)     -0.77   0.19  -0.11   0.69 
    C(K)     -0.59   0.26   0.34  -0.01 
 : 

TOTAL TEST INFORMATION 
@THETA:      INFORMATION: 
 -3.0 - -1.6  1.328  1.368  1.409  1.453  1.497  1.541  1.584  1.625 
 -1.4 -  0.0  1.661  1.692  1.717  1.735  1.745  1.747  1.742  1.730 
  0.2 -  1.6  1.712  1.689  1.662  1.631  1.598  1.563  1.527  1.490 
  1.8 -  3.0  1.454  1.418  1.383  1.350  1.318  1.288  1.260 
 : 

NEGATIVE TWICE THE LOGLIKELIHOOD=        51.8 
 : 

  

 

 
 

Example: Mixed Model Calibration of the Science Test—NR and GR Models, MMLE, 

MULTILOG 

To demonstrate a mixed model calibration using non-nested models, we calibrate our science 

test (Chapter 9) using the GR and the NR models.  The command file for performing this 

calibration is shown in Table 10.  As can be seen, two TEST lines are used to identify which 

items are associated with which model.  The first TEST line specifies the use of the NR model 

with items 1 through 3, whereas the second TEST line indicates that the GR model should be 

used with item 4.  The basic structure of the command file parallels that seen with the NR model 

(MULTILOG_NRMcalibrationEx.pdf’s Table 1) and for the GR model 

(MULTILOG_GRMcalibrationEx.pdf’s Table 2).  Performing this mixed model calibration 

produces a –2lnL of 322.2 with 22 free parameters (BIC = 487.0897); for the NR model there are 

2*(4 – 1) = 6 parameters per item times 3 items, or 18 parameters, and for the GR model there 

are 4 parameters (i.e., one   and 3 category boundary locations), for a total number of estimated 

parameters of 18 + 4 = 22.  Using the GR model for item 4 we have an estimated item 

discrimination of 0.60 with category boundary locations of 41̂  = –2.94, 42̂  = –0.42, and 43̂  = 
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1.95. 

 

Table 10.  Command file for the NR and GR mixed model calibration.
a
 

  
MULTILOG for Windows 7.00.2327.2 
MIX NR & GR MODELS; ITEM 4 - 3 CATEGORIES 
>PROBLEM RANDOM,  
         PATTERNS,  
         DATA = 'C:SCIENCE.PAT',  
         NITEMS = 4,  
         NGROUPS = 1,  
         NPATTERNS = 256,  
         NCHARS = 9; 
>TEST ITEMS=(1,2,3),   Identifying items 1‐3 for calibration 
      NOMINAL,   with NR model  
      NC = (4,4,4),    
      HIGH = (2,3,4); 
>TEST ITEMS=4,  Identifying item 4 for calibration  
      GR,    with GR model 
      NC = 4;   
>EST NC=500 IT=25; 
>END ; 

 : 
  

a
The text following the '' is provided to help the reader understand the corresponding input. 

 

 


