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Example: Application of the PC Model to a Reasoning Ability Instrument, MMLE, 

MULTILOG 

 

MULTILOG (Thissen, Chen, & Bock, 2003) implements MMLE for parameter estimation 

for the dichotomous models that have been discussed so far, as well as for polytomous models 

such as the graded response, nominal response, and multiple-choice models; these polytomous 

models are discussed in subsequent chapters.1 

As is the case with BILOG, estimation of the item parameters may proceed independently of 

estimation of the person parameters.  MULTILOG 7’s interface is similar to that of BILOG’s in 

the use of menus and dialogs to facilitate the creation of an input (control) file. This file is 

subsequently processed by MULTILOG.  

The command file for the PC calibration of the reasoning ability data is shown in Table 1. 

All command lines begin with the symbol “>,” are terminated by a semicolon, and contain a 

series of subcommands; in general, commands and subcommands can be abbreviated to two or 

three characters. Briefly, in the problem line (PROBLEM or PRO) one describes some of the 

data’s characteristics.  For instance, the INDIVIDUAL subcommand specifies that individual 

case data (rather than pattern data) are being used, that there are at most 3000 examinees 

(NEXAMINEES=3000; one may use this subcommand to restrict the number of cases read), that 

eight items are to be calibrated (NITEMS=8), and the RANDOM subcommand indicates that one 

is assuming that the individuals are randomly sampled from the population of interest and that 

one is performing item parameter estimation. In addition, each examinee case uses 15 characters 

as an identification label (NCHARS=15).  
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Table 1. Command file for MULTILOG PC model calibration example.
a
 

  
MULTILOG for Windows 7.00.2327.2 
ALIKE, 8 ITEMS, PC   title  
>PROBLEM RANDOM,    Problem description line  
         INDIVIDUAL,  
         DATA = 'Alike.DAT',  
         NITEMS = 8,  
         NGROUPS = 1,  
         NEXAMINEES = 3000,  
         NCHARS = 15; 
>TEST ALL,     Instrument description line  
      NOMINAL,    Specification of NO model 
      NC = (3(0)8),  
      HIGH = (3(0)8); 

>TMATRIX ALL AK POLY;   constraints for PCb 

>EQUAL ALL AK=1;   constraints for PCb 

>FIX ALL AK=2 VALUE=0.0;   constraints for PCb 

>TMATRIX ALL CK TRIANGLE;   constraints for PCb 
>EST NC=100 IT=25;  
>END ;   Terminates command section   
3   Number of response categories  
012   The response code line 
11111111   The 0s are recoded to be 1s for all eight items 
22222222   The 1s are recoded to be 2s for all eight items 
33333333   The 2s are recoded to be 3s for all eight items 
(15A1,T1,8(A1,1X))   The format for reading the data 

  

aThe text following the ' ' is provided to help the reader understand the corresponding input. 
bThese lines are inserted in the main MULTILOG window. 

 

To obtain estimates for the PC model we need to impose constraints on the nominal 

response model; the nominal response model is discussed in Chapter 9. Therefore, the TEST line 

instructs the program to obtain estimates for all items (ALL) on the instrument using the nominal 

response model (NOMINAL). Each of the eight items consists of three response categories (i.e., 

NC=(3(0)8)), and the keyword HIGH=(3(0)8) indicates that response category 3 is the 

highest category for each of the eight items. This notation of “(3(0)8)” is MULTILOG’s (and 

BILOG’s) shorthand way of indicating an integer set without having to individually indicate 

each value in the set. For example, NC=(3(0)8) indicates eight 3s and is equivalent to 

NC=(3,3,3,3,3,3,3,3).  

Subsequent to the TEST command is where we specify the constraints on the nominal 
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response model to obtain the PC model.  That is, the TMATRIX, EQUAL, and FIX lines impose 

the appropriate constraints on the nominal response model to obtain PC model estimates.  These 

constraints implement the contrasts among the various nominal response model parameters to 

obtain PC model estimates.  TMATRIX is MULTILOG’s parlance for the The transformation 

matrix Τ  discussed in Chapter 9.  Thissen and Steinberg (1986) as well as Muraki (1992) 

contain technical details on these constraints. Because the PC model states that all items have the 

same discrimination, we need to use the line EQUAL ALL AK=1 to instruct MULTILOG to 

constrain all the ˆ j s to be equal to one another, although not necessarily equal to 1. (If this line 

is omitted, each item’s j  would be estimated and the calibration model would be the 

generalized partial credit model [Chapter 8].)2  

On the EST NC=100 IT=50 line the maximum number of EM cycles that can be 

executed is set to 100 (NC=100) and the maximum number of M-step iterations is specified to 

be 25 (IT=25). Following the END command line is the description of the response data. There 

are three response categories with the codes 0, 1, and 2; therefore, these values are listed on the 

response code line (i.e., the line 012). Because with polytomous models MULTILOG internally 

uses category 0, we need to recode these response data. We recode the data by specifying that the 

response of 0 for each of the eight items should be recoded to 1 (i.e., the line 11111111). 

Similarly, we recode the response codes of 1 and 2 to be 2 and 3, respectively (i.e., the lines 

22222222 and 33333333, respectively). The final line contains the FORTRAN format for 

reading the response data. In this example each individual’s response vector is used as his or her 

character identification code. Therefore, the ‘15A1’ in the format is associated with the 

NCHARS=15 case identification subcommand on the PROBLEM line, whereas the ‘8(A1,1X)’ 

is the format for reading the eight item responses; ‘T1’ tells the program to return to the first 
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column. (FORTRAN formats are briefly discussed in Appendix F “FORTRAN Formats.”) 

The output presented in Table 2 begins with the specification of the number of examinees, 

number of items, and number of response codes, along with other logistical information. For 

example, the program read 2942 cases, there are eight items, and so on. The next section, 

ESTIMATION PARAMETERS, contains information concerning the calibration parameters. It 

shows that the maximum number of EM cycles is 100 (i.e., NC=100) and the maximum number 

of M-steps is 25 (i.e., IT=25). For the EM cycles and M-steps phases the convergence criteria 

are 0.001 and 0.0001, respectively. In addition, the line NUMBER OF FREE PARAMETERS 

IS: specifies the number of parameters estimated for this calibration. This information is useful 

for calculating degrees of freedom (e.g., for use with 2G ). In this case, there are 17 parameters 

being estimated (8 items*2 transition locations, 1j  and 2j , per item plus the common α). 

Following the ESTIMATION PARAMETERS section is the response codes section, CODE 

CATEGORY. One should inspect these codes to ensure that the codes used are the ones that are 

intended to be used and that there are as many codes as there are items. Similarly, the FIRST 

OBSERVATION AS READ should be verified to be correct. Given that the value of FINISHED 

CYCLE is less than 100 (i.e., FINISHED CYCLE is 11) and the MAXIMUM INTERCYCLE 

PARAMETER CHANGE is less than the convergence criterion we have a converged solution. 

The ITEM SUMMARY section contains the PC model item parameter estimates under the 

heading CONTRAST-COEFFICIENTS. From ITEM 1 we see that the common item 

discrimination estimate, ̂ , for all items is 0.84. Item 1’s first transition location ( 11̂ ) is 

estimated to be –1.30 and the second one ( 12̂ ) is –2.06; the standard errors for ̂ , 11̂ , and 12̂ , 

are 0.01, 0.12, and 0.08, respectively. The section OBSERVED AND EXPECTED 

COUNTS/PROPORTIONS IN contains the response frequency for each response category 0, 1, 
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2 (in the output these are labeled 1, 2, and 3, respectively). For instance, of the 2942 persons in 

the calibration sample, 201 did not receive any credit, 351 received partial credit, and 81.24% or 

2390 received full credit on item 1 (i.e., the traditional item difficulty for item 1, P1, is 

2390/2942 = 0.8124). This is a relatively easy item for this sample. It is important to examine the 

observed frequencies (or proportions) section because it allows one to determine the distribution 

of (category) scores on an item, whether there are some scores that are not observed, or whether 

there are infrequently given scores on a particular item. In these latter cases the corresponding 

transition location may not be well estimated.  

Returning to item 1’s CONTRAST-COEFFICIENTS section, one sees that each estimate 

has a parameter number label (i.e., P(#)). For example, the common  of 0.84 has the parameter 

number label of 1. Throughout the output all items that share a common ̂  (i.e., the items that 

are involved in the equality constraint) have the corresponding parameter estimate labeled 1. The 

transition location estimates for item 1, 11̂  and 12̂ , have the parameter numbers 2 and 3, 

respectively. If item 2’s estimates were presented, then 21̂  would have the parameter number 4 

and 22̂  would have the parameter number 5; the common ̂  would still have the parameter 

number 1. This characteristic can be seen with the results for the eighth item. The common ̂  

has the same parameter number as it did for the first item and the 81̂  =1.27 and 82̂  = 1.36 have 

parameter numbers labels of 16 and 17, respectively. That is, 82̂  is the 17th parameter referred 

to in the line NUMBER OF FREE PARAMETERS IS:17.  

The line labeled @THETA: INFORMATION shows item 1’s information function; the 

@THETA is labeled with a   range that specifies the corresponding location for the item 

information value. For example, the first line specifies the range from –3 to –1.6; therefore the 
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information at   = –3 is 0.352, at   = –2.8 it is 0.404, and so on. From the   range provided it 

be can be seen that item 1 provides most of its information in a neighborhood around –2 and then 

steadily decreases for the rest of the continuum.  

 

Table 2. Abridged output from MULTILOG PC model calibration example.a 
  

 : 
<echo of command file> 
 : 
 DATA PARAMETERS: 
  NUMBER OF LINES IN THE DATA FILE: 2942 
  NUMBER OF CATEGORICAL-RESPONSE ITEMS:   8 
  NUMBER OF CONTINUOUS-RESPONSE ITEMS, AND/OR GROUPS:   1 
  TOTAL NUMBER OF "ITEMS" (INCLUDING GROUPS):   9 
  NUMBER OF CHARACTERS IN ID FIELDS: 15 
  MAXIMUM NUMBER OF RESPONSE-CODES FOR ANY ITEM:  3 
  THE MISSING VALUE CODE FOR CONTINUOUS DATA:  9.0000 
  THE DATA WILL BE STORED IN MEMORY 
 
 ESTIMATION PARAMETERS: 
  THE ITEMS WILL BE CALIBRATED-- 
    BY MARGINAL MAXIMUM LIKELIHOOD ESTIMATION 
  MAXIMUM NUMBER OF EM CYCLES PERMITTED: 100 
  NUMBER OF PARAMETER-SEGMENTS USED IS:   9 
  NUMBER OF FREE PARAMETERS IS:   17 
  MAXIMUM NUMBER OF M-STEP ITERATIONS IS  25 TIMES 
    THE NUMBER OF PARAMETERS IN THE SEGMENT 
  THE M-STEP CONVERGENCE CRITERION IS: 0.000100 
  THE EM-CYCLE CONVERGENCE CRITERION IS: 0.001000 
  THE RK CONTROL PARAMETER (FOR THE M-STEPS) IS:  0.9000 
  THE RM CONTROL PARAMETER (FOR THE M-STEPS) IS:  1.0000 
  THE MAXIMUM ACCELERATION PERMITTED IS:  0.0000 
  THETA-GROUP LOCATIONS WILL REMAIN UNCHANGED 
: 
 KEY- 
 CODE  CATEGORY 
  0     11111111   The recodings to 1 for a response of 0  
  1     22222222   The recodings to 2 for a response of 1  
  2     33333333   The recodings to 3 for a response of 2  
: 
 FIRST OBSERVATION AS READ- 
 ID       1 1 2 0 0 0 0 0 
 ITEMS 11200000   The  response pattern for the first person  
 NORML      0.000 
 
 FINISHED CYCLE  11   Number of iterations 
 MAXIMUM INTERCYCLE PARAMETER CHANGE=   0.00055 P(  17) 
 
 
 
 
 
 
 ITEM SUMMARY 
 
 ITEM   1:       3 NOMINAL CATEGORIES,  3 HIGH 
  CATEGORY(K): 1      2      3 
    A(K)     -0.84   0.00   0.84 
    C(K)      0.00   1.30   3.36 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
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  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[POLY.]  P(#)  COEFF.[ TRI.] 
      1       1   0.84 (0.01)      2  -1.30 (0.12) 
      2      18   0.00 (0.00)      3  -2.06 (0.08) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.352  0.404  0.451  0.489  0.514  0.523  0.513  0.487 
 -1.4 -  0.0  0.448  0.400  0.349  0.298  0.251  0.209  0.172  0.141 
  0.2 -  1.6  0.115  0.093  0.076  0.062  0.051  0.042  0.034  0.028 
  1.8 -  3.0  0.023  0.019  0.016  0.013  0.011  0.009  0.008 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3 
  OBS. FREQ.    201    351   2390 
  OBS. PROP.  0.0683 0.1193 0.8124 
  EXP. PROP.  0.0669 0.1203 0.8128 
: 
 
 ITEM   8:       3 NOMINAL CATEGORIES,  3 HIGH 
  CATEGORY(K): 1      2      3 
    A(K)     -0.84   0.00   0.84 
    C(K)      0.00  -1.27  -2.63 
 
           CONTRAST-COEFFICIENTS (STANDARD ERRORS) 
  FOR:             A                    C 
  CONTRAST P(#)  COEFF.[POLY.]  P(#)  COEFF.[ TRI.] 
      1       1   0.84 (0.01)     16   1.27 (0.06) 
      2      39   0.00 (0.00)     17   1.36 (0.09) 
 
 @THETA:      INFORMATION:   (Theta values increase in steps of 0.2) 
 -3.0 - -1.6  0.017  0.020  0.023  0.028  0.033  0.040  0.047  0.057 
 -1.4 -  0.0  0.068  0.081  0.096  0.115  0.137  0.163  0.192  0.226 
  0.2 -  1.6  0.262  0.301  0.341  0.379  0.413  0.439  0.455  0.460 
  1.8 -  3.0  0.452  0.433  0.404  0.369  0.330  0.290  0.252 
 
  OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN  
  CATEGORY(K):  1      2      3 
  OBS. FREQ.   2043    616    283 
  OBS. PROP.  0.6944 0.2094 0.0962 
  EXP. PROP.  0.6947 0.2079 0.0974 
 
 ITEM   9: GRP1, N[MU:  0.00 SIGMA:  1.00] 
    P(#);(S.E.):   43; (0.00)   44; (0.00) 
: 
 
 TOTAL TEST INFORMATION 
 
 @THETA:      INFORMATION: 
 -3.0 - -1.6  1.831  1.972  2.124  2.283  2.444  2.602  2.755  2.898 
 -1.4 -  0.0  3.031  3.153  3.264  3.365  3.457  3.538  3.604  3.651 
  0.2 -  1.6  3.669  3.654  3.602  3.513  3.390  3.240  3.071  2.889 
  1.8 -  3.0  2.704  2.523  2.350  2.190  2.044  1.913  1.798 
 

  



8 
 

@THETA:      POSTERIOR STANDARD DEVIATION: 
 -3.0 - -1.6  0.739  0.712  0.686  0.662  0.640  0.620  0.603  0.587 
 -1.4 -  0.0  0.574  0.563  0.554  0.545  0.538  0.532  0.527  0.523 
  0.2 -  1.6  0.522  0.523  0.527  0.534  0.543  0.556  0.571  0.588 
  1.8 -  3.0  0.608  0.630  0.652  0.676  0.699  0.723  0.746 
 
 MARGINAL RELIABILITY:    0.6986 
 
 NEGATIVE TWICE THE LOGLIKELIHOOD=     -7624.1 
 (CHI-SQUARE FOR SEVERAL TIMES MORE EXAMINEES THAN CELLS) 

  

aThe text following the ' ' is provided to help the reader understand the corresponding input. 
 

For contrast purposes, item 8’s information is presented. This item is correctly answered by 

only 9.62% of the sample and its item information function peaks in the vicinity of 1.6. Given 

the model, its ̂  is the same as that of item 1 and its corresponding transition locations, 81̂  = 

1.27 and 82̂  = 1.36, are relative to item 1’s transition locations, at the opposite end of the   

continuum. (“Item 9” is not really an item but is concerned with whether the sample comes from 

a [prior] normal distribution with mean 0 and variance 1.).  The 1
ˆ sj  and 2

ˆ sj  correlate 0.99999 

and 1.00000 with the corresponding flexMIRT estimates (see Chapter 7). 

Figure 1 contains the ORFs and information functions for item 1; the PLOT menu item on 

the RUN menu produced this figure. Given the reversal in ˆs  for item 1 (i.e., 11̂  = –1.30 and 12̂

= –2.06), it is not surprising that respondents located above (approximately) –2.0 are more likely 

to receive full credit (ORF labeled “3”) rather than partial credit (ORF labeled “2”; left panel of 

Figure 1).  Similarly, respondents located below –2.0 have a higher probability of receiving no 

credit (ORF labeled “1”) rather than partial credit. Although the OBSERVED AND EXPECTED 

COUNTS indicate that each of the category scores are being utilized, the ORFs show that, in 

effect, this item is primarily behaving like a dichotomous item. For most of the respondents this 

is a relatively easy item. The @THETA: INFORMATION section of the output shows that at 

approximately –2.0 this item provided its maximum information. This is confirmed by the item 
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information function in the right panel of Figure 1.  

Figure 1. ORFs and item information function for item 1.   

 

 

Figure 2 contains the ORFs for all the items on the instrument.  Four of the items have a 

tendency to behave in a dichotomous way (items 1, 2, 5, and 7), whereas items 3, 4, 6, and 8 are 

trichotomous.  It is also seen that items 1, 2, and 3 are useful for assessing people located in the 

lower half of the   continuum, items 4, 5, and 7 provide information in the middle of the 

continuum, and items 6 and 8 are tapping the upper half of the continuum. Therefore, the 

instrument gives relatively broad capacity to measure reasoning ability. 

The sum of the item information functions is captured by the instrument’s total information 

(in Table 2, labeled TOTAL TEST INFORMATION); these values have 1.0 added to them. This 

table, read similarly to that of the item information, indicates that the maximum information for 

locating individuals occurs in the neighborhood of   = 0.2. A graphical depiction of this 

information function is shown in Figure 3; the PLOT menu item on the RUN menu produced this 

figure. This double-Y graph overlays the corresponding standard errors for persons as a function 
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of   on the total information function (the right side ordinate provides the scale for interpreting 

the standard errors); similar information is provided in the table entitled @THETA: 

POSTERIOR STANDARD DEVIATION in the output (Table 2). As can be seen, the accuracy 

of person location estimation varies as a function of the specific location. Specifically, this 

instrument does a comparatively better job of estimating a person’s location from around –0.5 to 

1.0 and a progressively poorer job as one approaches 2 or –2.  

 

Figure 2. ORFs for all eight Alike items.
a
  

 

 

a
Items are read left to right, top to bottom.  For example, for row 1 item 1 is left, item 2 is center, item 3 is 

right; for row 2 item 4 is left, item 5 is center, and so on. 

 

Most practitioners and consumers of psychometrics are familiar with traditional estimators 

of the reliability of an instrument’s scores (e.g., Cronbach (1951) coefficient alpha/Guttman 3  

(1945)). Therefore, in some situations it may be desirable to have a single numerical value that 
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“captures” the accuracy of the person location estimation. Green, Bock, Humphreys, Linn, and 

Reckase (1984) present an average or marginal measurement error index, the marginal 

reliability, that is unitless and is bounded by 0 and 1. MULTILOG presents a MARGINAL 

RELIABILITY on the output. The marginal reliability for the ̂ s from this instrument is 0.6986 

and it reflects an average accuracy across the continuum. However, it is only when the total 

information function is somewhat uniformly distributed that this value accurately characterizes 

the precision of measurement across the continuum. In our example, the total information 

function is peaked and, as a result, the marginal reliability is underrepresenting the accuracy in 

the vicinity of the peak and overrepresenting accuracy in the tails of the information function.3  

 

Figure 3. Total information for Alike reasoning exam, PC model.
a
   

 

a
Legend-Solid line: total information, Dotted line: Standard error. 

 

In terms of model-level fit information MULTILOG provides –2lnL at the end of its output 

(i.e., NEGATIVE TWICE THE LOGLIKELIHOOD). (The value printed is negative 2 times the 
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log of a number that is proportional to the likelihood [Thissen et al., 2003].) With individual case 

data, as we have in this example, the –2lnL value of –7624.1 is not useful and is ignored. 

However, when pattern data are calibrated, this index may be used for an overall assessment of 

model–data fit as well as model comparisons; this assumes that most or all of the possible 

patterns are observed. Chapters 8 and 9 contain examples using pattern data with MULTILOG. 

Because MULTILOG 7 (and earlier versions) does not provide item-level tests of fit we use 

another program, MODFIT (Levine, Drasgon, & Stark, 2001), to obtain this fit information. As 

mentioned above, the sample sizes typically seen in calibrations result in potentially powerful 

statistical fit tests. As such, significant statistical tests should be interpreted in conjunction with 

graphical displays. In this regard, MODFIT provides both the empirical and predicted ORFs, as 

well as the item fit statistics (e.g., 2 ). (MODFIT is limited to 40 two- to seven-option items 

and 3000 cases. It can produce these graphs for dichotomous as well as polytomous models; the 

technical details may be found in Drasgow, Levine, Tsien, Williams, & Mead [1995].)  

Figure 4 contains the empirical and predicted ORFs for each option for item 1 using 

MODFIT. As can be seen from panel A, the predicted ORF (labeled ORF 1-0; symbol = 

diamond) falls within the 95% error bars of the empirical ORF (labeled EMP 1- 0; symbol = 

circle) for the incorrect response (i.e., option 0). Similarly, the partially correct response (i.e., 

option 1) shows some congruence between the predicted (ORF 1-1) and empirical (EMP 1- 1) 

ORFs (panel B), but not as well as for option 0. The same may be said for the correct response, 

option 2 (panel C). Panel C shows that for part of the continuum the predicted (ORF 1-2) does 

not fall within the error bars of the empirical ORF (EMP 1- 2), indicating a lack of agreement. 

Examination of the empirical and predicted ORFs for the other items shows better agreement 

between the empirical and predicted ORFs than seen in Figure 4; this is true for all of the 
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remaining items except for item 3. However, overall we consider the agreement between the 

empirical and predicted ORFs to be sufficiently good to believe that we have model–data fit with 

the PC model. (In the next chapter a model that allows items to vary in terms of their 

discrimination is applied to these data to see if model–data fit may be improved.)  

It is good practice that model–data fit analysis include examinations of the invariance and 

conditional independence assumptions. The corresponding evidence would aid in supporting (or 

not) the above conclusion of model–data fit with the PC model. Because MULTILOG does not 

have BILOG’s random sampling capability (e.g., see Chapter 5) we would use the sampling 

procedure presented in Chapter 3 to investigate invariance with the PC model. Analogous to 

what was done in Chapter 3, this invariance investigation would use the correlations between 

corresponding ˆ
jh s across the two groups.  

 

Figure 4. Empirical and predicted ORFs for item 1.  
Panel A. 

Fit Plot for Item 1, Option 0
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Panel B. 

Fit Plot for Item 1, Option 1
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Panel C. 

Fit Plot for Item 1, Option 2
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NOTES 

1. MULTILOG does not use the scaling constant D in its estimation. As a result, the item 

parameter estimates are on the logistic metric. To place them on the normal metric we would 

transform the discrimination estimates using 

 
* ˆ

ˆ




 
 

2. Because the constant   across items may not be equal to 1, the relationship between the 

MULTILOG PC model and the Masters PC model is analogous to the relationship between the 

1PL and Rasch models. That is, mathematically, the MULTILOG PC model and the Masters PC 

model are equivalent: The values from one model can be converted into the other by appropriate 

rescaling. However, if one wants to directly estimate the Masters PC model, then a program such 

as BIGSTEPS, WINSTEPS, or ConQuest can be used. 

3. Green et al. (1984) define the marginal reliability as 

 
2 2

arg 2
em

m




 



   

where 2
  is the variance of the observed person locations, 2
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and ( )g   is the person distribution that, when ( )g   is normally distributed, can be evaluated 

using a Gaussian quadrature approach.  

As an alternative to an index for the entire metric, one may calculate the conditional 

reliability (Green et al., 1984) at a   point. They define conditional reliability as 
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2 2

2

( )
( ) e



   



  (7.10) 

where 2
  is the variance of the observed person locations and 2 ( )e   is the expected variance 

error of estimate. The term ( )   specifies “the reliability if everyone were measured with the 

same precision as those persons” (p. 353) located at  . In addition, the graphing of ( )   as a 

function of   would allow an assessment of the estimation properties of the instrument at 

various levels of   on a bounded and potentially more easily interpreted (ordinate) scale from 0 

to 1 than that used with the total information function. An additional reliability index is provided 

by Bock and Mislevy (1982). Their reliability coefficient for the EAP location estimate, 

2ˆ1 ( )PSD   , is based on the assumption that the latent variable is normally distributed in the 

population with mean 0 and variance 1. 

 


